Visual Field Map Organization in Human Visual Cortex
نویسندگان
چکیده
The search for organizing principles of visual processing in cortex has proven long and fruitful, demonstrating specific types of organization arising on multiple scales (e.g., magnocellular / parvo-cellular pathways [1] and ocular dominance columns [2]). One of the more important larger scale organizing principles of visual cortical organization is the visual field map (VFM): neurons whose visual receptive fields lie next to one another in visual space are located next to one another in cortex, forming one complete representation of contralateral visual space [3]. Each VFM subserves a specific computation or set of computations; locating these VFMs allows for the systematic exploration of these computations across visual cortex [4, 5]. It has been suggested that this retinotopic organization of VFMs allows for efficient connectivity between neurons that represent nearby locations in visual space, likely necessary for such processes as lateral inhibition and gain control [6-9]. This chapter will discuss the primary neuroimaging techniques used for measuring human VFMs, our current understanding of the organization of visuospatial representations across human visual cortex, the present state of our knowledge of white matter connectivity among these representations, and how these measurements inform us about the functional divisions of visual cortex in human.
منابع مشابه
Receptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملVisual field map clusters in human frontoparietal cortex
The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher-order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field...
متن کاملSelf-Organized Retinotopic Maps on a Curved Cortical Surface to Predict Visual Field Defects
Visual aura is a common migraine symptom. Prediction of their spatio-temporal evolution can help to understand the underlying etiology. Self-organization is used on the curved surface of the visual cortex to reproduce human retinotopy. The neural layer of the SOM algorithm is created by a novel approach to implement centroidal Voronoi tesselations on meshes. Realistic retinotopic maps are obtai...
متن کامل